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Abstract This contribution presents an algorithm for constrained minimization
of strictly convex quadratic functions subject to simple bounds and separable
ellipsoidal constraints. The algorithm is used for numerical solution of discretized
3D contact problems with orthotropic friction. These problems have been solved by
a polygonal approximation of the friction cone. Our algorithm enables us to use the
original friction cone without any approximation. Results of model examples are
shown.
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1 Introduction

Methods for numerical minimization of quadratic functions subject to convex con-
straints have been intensively developed in last decades [1–3,17] and nowadays they
are an inherent part of many packages. These methods, however, are integrated into
the packages in a fairly general setting. Therefore, they usually cannot be directly
used in large scale problems arising, e.g., from finite element approximations.
For this reason, the development of methods which take into account specifics of
problems to be solved is important. Potential features which may be beneficial are
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the following: a) the number of variables subject to constraints is much lower than
the total number of all variables; b) each variable appears in one constraint at most,
i.e., the constraints are separable. In [13, 14], the author introduced and analyzed a
new method for minimization of strictly convex quadratic functions with separable
convex constraints. The separable character of constraints simplified the analysis
that was based on the Karusch-Kuhn-Tucker (KKT) conditions. Their geometrical
interpretation enabled to generalize an idea of the reduced gradient introduced
originally for simple bound problems [4]. The resulting algorithm is closely related
to the Rosen method [16]. Clearly, the efficient implementation of the algorithm
strongly depends on the specific form of the constraint functions.

This study was motivated by necessity to solve numerically 3D contact problems
with friction [10]. So far such problems have been solved by a polygonal approxi-
mation of the Coulomb friction cone [18]. The presented algorithm enables us to use
the original Coulomb friction cone without any approximation. Since the number of
unilateral constraints describing contact conditions is much smaller in comparison
with the total number of all variables (hence a)), one of the efficient approaches
for solving such problems is based on an appropriate discretization of the dual
variational formulation, i.e., the formulation in terms of the Lagrange multipliers
which are defined on the contact boundary. There are two vectors of the Lagrange
multipliers in the discrete setting of frictional contact problems: one, denoted as N�� ,
releases the unilateral constraints and is subject only to a sign condition; the second
one, denoted as N�t WD . N�t1 ;

N�t2 /, regularizes the non-smooth frictional term and is
subject to convex constraints imposed on disjoint pairs of its components (hence b)).
For an isotropic friction law, when frictional effects are the same in all directions,
the constraints reduce to simple circular (spherical) ones, i.e., the zero level sets of
the constraint functions are circles in R

2.
The aim of the contribution is to extend this method to the case of separable

ellipsoidal constraints. A simple change of variables permits to transform the
ellipsoidal constraints to the circular ones. In computations, however, it turns out
that the original setting (i.e., with the ellipsoidal constraints) is usually better for the
performance of the algorithm, especially, in the case of strongly eccentric ellipses.
Again, the minimization of functions with this type of constraints was motivated
by practical needs. Indeed, the dual variational formulation of 3D contact problems
with orthotropic friction (i.e., friction effects are now different in two à-priori given
perpendicular directions) leads to separable ellipsoidal constraints for pairs made of
the components of N�t .

The paper is organized as follows. In Sect. 2 we shortly recall results from [13,
14]. The main attention will be paid to the numerical computation of the projection
onto the ellipse which is an important ingredient of our algorithm. Unlike the
projection onto the circle, this one is far from to be so simple. Finally in Sect. 3,
we first derive the algebraic form of the dual formulation of 3D contact problems
with orthotropic Coulomb friction and then, in Sect. 4, we apply our algorithms to
several model examples.
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2 Minimization Subject to Separable Ellipsoidal Constraints

In this section, we consider the following problem:

find Nx� D arg minfq.Nx/ W Nx 2 ƒg; (2.1)

where q.Nx/ D 1
2

Nx>ANx�Nx> Nb with symmetric, positive definite A 2 R
n�n, Nb; Nx 2 R

n,
Nx D .x1; : : : ; xn/>, n D 3m, and ƒ D ƒ1 � � � � � ƒ2m defined by

ƒi D fxi 2 R W xi � lig;

ƒiCm D f.xiCm; xiC2m/> 2 R
2 W

�
xiCm � ci

ai

�2

C
�

xiC2m � ciCm

aiCm

�2

� g2
i g

with given li ; ci ; ciCm 2 R, gi ; ai ; aiCm 2 RC for i D 1; : : : ; m. As q is strictly
convex on the closed covex set ƒ, there is a unique solution Nx� 2 ƒ to (2.1). Before
we give ideas of the active-set KPRGP algorithm (KKT Proportioning with Reduced
Gradient Projections) analyzed in [7, 14], we introduce notation.

Let N D f1; : : : ; ng be the set of all indices and let A.Nx/ � N be the subset of
indices of active constraints at Nx 2 ƒ:

A.Nx/ D fi W xi D li ; 1 � i � mg

[
fj W j D i C m;

�
xiCm � ci

ai

�2

C
�

xiC2m � ciCm

aiCm

�2

D g2
i ; 1 � i � mg

[
fj W j D i C 2m;

�
xiCm � ci

ai

�2

C
�

xiC2m � ciCm

aiCm

�2

D g2
i ; 1 � i � mg:

Let Nr.Nx/ D ANx � Nb denote the gradient of q at Nx 2 R
n. The orthogonal projection

Pƒ onto ƒ at Nx 2 R
n is defined by

Pƒ.Nx/ D arg minNy2ƒ
kNy � Nxk: (2.2)

As ƒ is separable, Pƒ may be split into single projections Pƒi onto ƒi . Let us
introduce the reduced gradient of q at Nx 2 ƒ for a fixed ˛ > 0 by:

Nr red.Nx/ D 1

˛
.Nx � Pƒ.Nx � ˛Nr.Nx///:

Note that the reduced gradient characterizes the optimality criterion to (2.1). Indeed,
Nx� is the solution to (2.1) iff Nrred.Nx�/ D 0. Moreover, if Nx 6D Nx� and ˛ > 0
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is sufficiently small, then the negative reduced gradient �Nr red.Nx/ is a decrease
direction at Nx 2 ƒ. To change appropriately the active set, we decompose Nr red WD
Nr red.Nx/ into the free reduced gradient N' WD N'.Nx/ and the chopped reduced gradient
N WD N .Nx/ as follows:

N'A D 0; N'NnA D Nr red
NnA;

N A D Nr red
A ; N MnA D 0;

where N'A and N'NnA denote the sub-vectors of N' with components determined by
the indices of A WD A.Nx/ and N n A, respectively (similarly for Nr red and N ).

We combine the following three steps to generate a sequence fNx.l/g that approxi-
mates the solution Nx�:

• the expansion step: Nx.lC1/ D Nx.l/ � ˛ N'.Nx.l//,
• the proportioning step: Nx.lC1/ D Nx.l/ � ˛ N .Nx.l//,
• the conjugate gradient step: Nx.lC1/ D Nx.l/�˛

.l/
cg Np.l/, where the step-length ˛

.l/
cg and

the conjugate gradient directions Np.l/ are computed recurrently [8]; the recurrence
starts from Nx.s/ generated by the last expansion or the proportioning step and
satisfies A.Nx.lC1// D A.Nx.s//.

The expansion step may add while the proportioning step may remove indices
to/from the current active set. The conjugate gradient steps are used to carry out
efficiently the minimization of q in the interior of the face W.Nx.s// D fNx 2 ƒj NxA D
Nx.s/

A ; A WD A.Nx.s//g. Moreover, the algorithm exploits a given constant � > 0 in the
proportioning criterion

N .Nx.l//>Nr.Nx.l// � � N'.Nx.l//>Nr.Nx.l// (2.3)

to decide which of the steps will be performed.
Algorithm KPRGP

Let Nx.0/ 2 ƒ, � > 0, ˛ 2 .0; 2kAk�1/, and " > 0 be given. For Nx.l/, Nx.s/ known,
0 � s � l , where Nx.s/ is computed by the last expansion or proportioning step,
choose Nx.lC1/ by the following rules:

(i). If kNr red.Nx.l//k � ", return Nx D Nx.l/.
(ii). If Nx.l/ fulfils (2.3), try to generate Nx.lC1/ by the conjugate gradient step. If

Nx.lC1/ 2 Int W.Nx.s//, accept it, otherwise generate Nx.lC1/ by the expansion
step.

(iii). If Nx.l/ does not fulfil (2.3), generate Nx.lC1/ by the proportioning step.

The convergence rate of this algorithm derived in [14] does not depend on the
type of convex constraints. However, the implementation requires to compute the
projection Pƒ via the single projections Pƒi and PƒiCm

, 1 � i � m. In the rest of
this section we show how to compute these projections.
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The set ƒi , i D 1; : : : ; m represents the simple bound for which the projection
is trivial:

Pƒi .xi / D
(

xi if xi � li ;

li otherwise.

The projection onto ƒiCm, i D 1; : : : ; m is more involved. To simplify our
presentation we denote xi D .xiCm; xiC2m/> 2 R

2 and ci D .ci ; ciCm/> 2 R
2.

The corresponding projection is given by

PƒiCm
.xi / D

8̂<
:̂

xi if

�
xiCm � ci

ai

�2

C
�

xiC2m � ciCm

aiCm

�2

� g2
i ;

yi otherwise,

where we will specify how to get yi 2 R
2. We distinguish two situations. If ai D

aiC1, then ƒiCm describes the circular constraint for which yi is given by the explicit
formula:

yi D ci C ai gi

kxi � cik .xi � ci /: (2.4)

If ai 6D aiC1, then yi is the closest point to xi lying on the ellipse ei WD ei .t/ (in the
parametric representation):

ei .t/ D ci C gi

 
ai cos t

aiCm sin t

!
; t 2 Œ0; 2�/:

Let t� be the value of t such that yi D ei .t
�/. Such t� satisfies the following

orthogonality condition:

.xi � ei .t//
>e0

i .t/ D 0: (2.5)

Although (2.5) is the equation in R
1, its solution is not unique. The reason is

that (2.5) is equivalent to the fourth degree polynomial equation with either two or
four roots. Fortunately, one can recognize correct t� characterized by the fact that yi

belongs to the same quadrant as xi , provided that the local coordinate system (in R
2)

coincides with the half-axes of the ellipse. To perform efficiently computations of
t� via (2.5), we combine the Newton and bisection methods (in R

1). The resulting
algorithm may benefit from fast convergence of the Newton iterations while the
bisection steps ensure convergence to t�. A long sequence of bisection steps are
generated in situations when the root t� is close to an inflection point of the function
in (2.5) (that is not excluded in general).
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Remark 2.1. Another way how to solve (2.1) by ALGORITHM KPRGP consists in
transforming the ellipsoidal constraints to the circular ones using the substitution:

Ny D D�1 Nx;

where D D diag.1; : : : ; 1; a1; : : : ; a2m/ 2 R
n�n. This leads to the problem in terms

of the new variable Ny:

find Ny� D arg minfq.Ny/ W Ny 2 ƒg; (2.6)

where q.Ny/ D 1
2

Ny>DADNy � Ny>D Nb and ƒ D ƒ1 � � � � � ƒ2m is defined by

ƒi D fyi 2 R W yi � lig;

ƒiCm D f.yiCm; yiC2m/> 2 R
2 W .yiCm � di /

2 C .yiC2m � diCm/2 � g2
i g;

with di D ci =ai , diCm D ciCm=aiCm for i D 1; : : : ; m. Problem (2.6) is the special
case of (2.1) for which the projections can be computed by (2.4). On the other
hand, the condition number of DAD is usually greater than the one of A, especially,
when the ellipses in the original problem are strongly eccentric. In this case, the
convergence factor of ALGORITHM KPRGP derived in [14] is smaller for (2.1) that
may result in a better performance of computations.

3 Numerical Solution of 3D Contact Problems
with Orthotropic Coulomb Friction

The minimization algorithm from the previous section will be now used for the
numerical solution of 3D contact problems with orthotropic Coulomb friction.
Recall that contact mechanics is a branch of mechanics of solids which studies
the behavior of loaded systems of deformable bodies being in mutual contact.
Mathematical models of such problems are given by equations involving non-
smooth multivalued mappings due to non-penetration and friction conditions on
common parts of the boundary. In contrast to isotropic friction, effects of orthotropic
friction are different in directions of two orthogonal orthotropy axis. We first
present the weak formulation of such problems, then we give their finite element
discretization and the transformation of the resulting algebraic problem into a new
one having a structure required by the algorithm KPRGP.

Our system consists of two elastic bodies represented by polyhedral domains
�k � R

3 whose boundaries are split into three disjoint parts �k
u , �k

p , and �k
c , k D

1; 2. Denote � D �1 [ �2, �u D �1
u [ �2

u , �p D �1
p [ �2

p , and �c D �1
c [

�2
c . The zero displacements will be prescribed on �u, while surface tractions of

density p 2 .L2.�p//3 act on �p . Both bodies are in contact along �1
c and �2

c in
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the undeformed state. In what follows we shall suppose that �k
u 6D ;, k D 1; 2 and

�1
c D �2

c , i.e. there is no gap between �1 and �2. On �c unilateral and friction
conditions will be prescribed. Finally, � is subject to body forces of density f 2
.L2.�//3. Our aim is to find an equilibrium state of this system.

Before we give the weak formulation of this problem, we introduce several
notation and function sets which will be needed. Let u W � 7! R

3 be a deformation
field in � and uk WD uj�k its restriction to �k , k D 1; 2. By �.u/ D 1

2
.ruC.ru/>/

we denote the linearized strain tensor, while � .u/ is the stress tensor linked to �.u/

by means of a linear Hooke’s law whose coefficients satisfy the usual symmetry
and ellipticity conditions [15]. The outward unit normal vector to @�1 at a point
x 2 �c is denoted as �.x/. The orthotropy axis of friction at x 2 �c are given
by a pair of orthogonal vectors t1.x/ and t2.x/ lying in the tangent plane to �c

at x. The relative normal contact displacement at x 2 �c is defined by u�.x/ WD
.u1.x/ � u2.x//>�.x/ and ��.u.x// WD �>.x/� .u1.x//�.x/ is the normal contact
stress. Similarly, ut .x/ D .ut1.x/; ut2 .x//>, � t .u.x// D .�t1.u.x//; �t2.u.x///>
are the relative tangential contact displacement and the tangential contact stress at
x 2 �c , respectively, whose components are uti .x/ WD .u1.x/ � u2.x//>ti .x/ and
�ti .u.x// WD ti

>.x/� .u1.x//�.x/, i D 1; 2. In addition to orthotropy axis, friction
will be characterized by two positive, bounded and continuous functions F1 and F2

whose values at x 2 �c define coefficients of friction in directions t1.x/ and t2.x/,
respectively. The diagonal .2�2/ matrix diagfF1; F2g will be denoted byF. Finally,
k � k stands for the Euclidean norm of vectors from R

2.
Now we introduce the following function sets:

V D fv D .v1; v2/ 2 .H 1.�1//3 � .H 1.�2//3j v D 0 on �ug;

K D fv 2 Vj v� � 0 on �cg;

X� D f' 2 L2.�c/j 9v 2 V W ' D v� on �cg;

X 0
� D dual of X�;

XC
� D f' 2 X�j ' � 0 on �cg:

The cone of all non-negative elements of X 0
� will be denoted by X 0

�C and h�; �i is a
duality pairing on X 0

� � X� . Next we shall suppose that kFvt k belongs to X�C for
any v 2 V.

We start with the following auxiliary problem: given g 2 X 0
�C, find u WD u.g/ 2

K satisfying

a.u; v � u/ C hg; kFvt k � kFut ki � L.v � u/ 8v 2 K; (3.1)
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where

a.u; v/ D
Z

�

� .u/ W �.v/ dx WD
Z

�

�ij .u/�ij .v/ dx;

L.v/ D
Z

�

f>v dx C
Z

�p

p>v ds; u; v 2 V:

It is easy to show that (3.1) has a unique solution for any g 2 X 0
�C. In addition, (3.1)

is equivalent to the following minimization problem:

Find u 2 K such that

Jg.u/ � Jg.v/ 8v 2 K;

)
.P.g//

where Jg.v/ D 1
2
a.v; v/ � L.v/ C hg; kFvt ki. Problem .P.g// is the variational

formulation of contact problems with orthotropic friction and a given slip bound g.
Let us suppose that ���.u.g// 2 X 0

�C for every g 2 X 0
�C. Then one can define the

mapping ‰ W X 0
�C 7! X 0

�C by

‰ W g 7! ���.u.g// 8g 2 X 0
�C:

Definition 3.1. By a weak solution of 3D contact problems with orthotropic
Coulomb friction we mean any u 2 K such that ‰.���.u// D ���.u/, i.e., ���.u/

is a fixed point of ‰ in X 0
�C.

Remark 3.2. In the weak formulation of this problem, the following unilateral and
friction conditions are hidden:

(unilateral conditions)

u� � 0; ��.u/ � 0; u���.u/ D 0 on �c;

(friction conditions)

ut .x/ D 0 H) kF �1� t .u.x//k � ���.u.x//;

ut .x/ 6D 0 H) F �1� t .u.x// D ��.u.x//
Fut .x/

kFut .x/k ; x 2 �c:

We use the method of successive approximation for finding fixed points of ‰ in
X 0

�C:

given g.0/ 2 X 0
�CI

set g.kC1/ D ‰.g.k//; k D 0; 1; : : : :

)
(3.2)

To get the new iteration g.kC1/ one has to solve problem .P.g.k///.
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Remark 3.3. Let us note that convergence of (3.2) in continuous setting of our
problem is not guaranteed. The situation is somewhat different in the discrete case
(for details see [9, 11]).

Since .P.g//, g 2 X 0
�C is the heart of (3.2), we focus in the subsequent part on its

efficient numerical solution. For a discretization of .P.g// we use a finite element
method. First we choose a finite dimensional space Vh � V, dimVh D n.h/ of

piecewise polynomial functions of the Lagrange type over partitions T k
h of �

k
,

which are compatible with the decomposition of @�k into �k
u , �k

p , and �c , k D 1; 2.
These partitions will be constructed in such a way that T 1

hj�c
D T 2

hj�c
. In particular

this means that if vh D .v1
h; v2

h/ 2 Vh, where vk
h WD vhj�k , then the degrees of

freedom (function values in our case) of v1
h and v2

h on �c are prescribed at the same
nodes of T k

h on �c . Typically, Vh is made of P1 tetrahedral elements. Finally set
Th D T 1

h [ T 2
h which is the partition of the whole �. By C we denote the set of all

nodes a1; : : : ; am of Th which are located on �c . To simplify our presentation we

shall suppose that �
k

u \ �c D ;, k D 1; 2 and �c is a flat part of @�. Then the
discretization of K is defined by

Kh D fvh 2 Vhj vh�.ai / � 0 8i D 1; : : : ; mg;

where vh�.ai / WD .v1
h.ai / � v2

h.ai //
>�, i D 1; : : : ; m, i.e., the non-penetration

conditions in Kh are prescribed at the nodes of C only using the fact that � is constant
along �c . The approximation of .P.g// reads as follows:

Find uh WD uh.g/ 2 Kh such that

Jg.uh/ � Jg.vh/ 8vh 2 Kh:

)
.P.g//h

Next we rewrite .P.g//h into the algebraic form, i.e. the problem expressed by
means of the nodal displacement vectors Nv 2 R

n of vh 2 Vh, where n WD n.h/ D
dimVh. Since first two terms of Jg define the quadratic, coercive functional, its
algebraic form leads to a quadratic function with a positive definite, symmetric,
block diagonal matrix K. The frictional term will be evaluated using an appropriate
cubature formula. Suppose that the slip bound g is represented by a continuous
function. Then

hg; kF vhtki D
Z

�c

gkF vhtk ds 	
mX

rD1

!r g.ar /kF.ar /vht.ar /k; (3.3)

where !r 2 R
1, r D 1; : : : ; m are weights of the used cubature formula. To

express (3.3) and the whole problem .P.g//h in the algebraic form, the following
notation will be used: by N we denote an .m � n/ matrix representing the linear
mapping vh 7! .vh�.a1/; : : : ; vh�.am// 2 R

m, vh 2 Vh. Similarly, Tj , j D 1; 2

are .m � n/ matrices of the linear mappings vh 7! .vhtj .a1/; : : : ; vhtj .am// 2 R
m,
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vh 2 Vh, where vhtj .ar / WD .v1
h.ar / � v2

h.ar //
>tj . Let Tjr be the r-th row of Tj .

Then Nvr
t WD .T1r Nv; T2r Nv/> 2 R

2 is the vector of the tangential displacements at the
node ar . Finally set Fr WD F.ar /, gr WD g.ar /, and Ng D .g1; : : : ; gm/>. Using this
notation, .P.g//h can be written as follows:

Find Nu 2 K such that

JNg. Nu/ � JNg.Nv/ 8Nv 2 K;

)
.P.Ng//

where

JNg.Nv/ D 1

2
Nv>KNv � Nv>Nf C

mX
rD1

!rgr kFr Nvr
t k

and

K D fNv 2 R
nj NNv � 0g:

To release the constraints in K and to regularize the non-differentiable frictional
term we use the duality approach. Let

X.Ng/ D R
mC � Xt .Ng/

be the set of the Lagrange multipliers, where

Xt .Ng/ D f. N�t1
; N�t2

/ 2 R
m � R

mj kF�1
r N�r

t k � !rgr ; r D 1; : : : ; mg

and N�r
t D .�t1r ; �t2r /

> 2 R
2 is the vector made of the r-th components of N�t1

and
N�t2

. It is easy to verify that

mX
rD1

!rgr kFr Nvr
t /k D max

. N�t1
; N�t2

/2Xt .Ng/

mX
rD1

. N�r
t /

> Nvr
t :

Thus

minNv2K
JNg.Nv/ D minNv2Rn

sup
N�2X.Ng/

L.Nv; N�/;

where L.Nv; N�/ D 1
2
Nv>KNv � Nv>Nf C N�>BNv is the Lagrangian, N� D . N�>

� ; N�>
t1

; N�>
t2

/>

2 X.Ng/, and B D .N>; T>
1 ; T>

2 /> is the .3m�n/ matrix. Instead of .P.Ng// we shall
use its saddle-point formulation:
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Find . Nu; N�/ 2 R
n � X.Ng/ such that

L. Nu; N�/ � L. Nu; N�/ � L.Nv; N�/ 8.Nv; N�/ 2 R
n � X.Ng/;

)

or, equivalently,

Find . Nu; N�/ 2 R
n � X.Ng/ satisfying

K Nu D Nf � B> N�;

. N�� N�/>B Nu � 0 8 N� 2 X.Ng/:

9>>=
>>;

.M.Ng//

One can easily show that .M.Ng// has a unique solution. Moreover its first
component Nu solves .P.Ng//. Now we eliminate Nu from the first equation: Nu D
K�1.Nf � B> N�/ and substitute it into the second inequality. The resulting problem
in terms of the Lagrange multipliers is equivalent to the following minimization
problem:

Find N� 2 X.Ng/ such that

S. N�/ � S. N�/ 8 N� 2 X.Ng/;

)
.D.Ng//

where S is the quadratic function with the symmetric, positive definite matrix
BK�1B> and the linear term Nh D BK�1Nf. Notice that .D.Ng// has already the
structure required by the algorithm KPRGP: the separated lower bounds for the
components of N�� and the ellipsoidal constraints for the components of . N�t1 ;

N�t2 /

as it follows from the definition of X.Ng/. Having N� at our disposal we easily
obtain Nu.

Remark 3.4. Model examples are solved by MatSol library [12] which uses the
TFETI domain decomposition approach: each �k , k D 1; 2 is divided into a finite
number of subdomains involving “floating” blocks. To ensure continuity across
subdomain interfaces and to satisfy the Dirichlet boundary conditions at the nodes
of Th on �u, the additional Lagrange multipliers are introduced. Then the resulting
dual problem is given by the minimization of the quadratic function as in .D.Ng//

but the set X.Ng/ contains, in addition, linear equality constraints. This fact requires
an extension of the KPRGP algorithm called the SMALSE-M algorithm (for details
see [7]). For realization of the problem with orthotropic Coulomb friction, we use
an inexact implementation of the method of successive approximations (3.2) which
performs only one iteration of the SMALSE-M in each step. In other words, the
SAMLSE-M iterations and the successive approximations are performed by one
outer loop.
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Fig. 1 Geometry of the
problem

Fig. 2 Milled contact surface

4 Numerical Examples

Let us consider a 3D contact problem of two cantilever beams of sizes 2�1�1 [m] in
mutual contact with different coefficients of friction in two orthogonal directions to
describe specially milled contact surface. The geometry, the prescribed boundary
conditions, and material properties are specified in Fig. 1. The milled surface is
depicted in Fig. 2. Finally, the volume forces are neglected and the coefficients of
friction F1 and F2 on the contact interface are chosen in four different ways:

.a/ Frictionless case: friction is neglected (Example 1);

.b/ Isotropic case: F1 D F2 D 0:3 (Example 2);

.c/ Orthotropic case: F1 D 0:5 in the direction t1 D .1; 0; 0/> and F2 D 0:1 in
t2 D .0; 1; 0/> (Example 3);

.d/ Orthotropic case: F1 D 0:5 in the direction t1 D .
p

2=2; �p
2=2; 0/> and

F2 D 0:1 in t2 D .
p

2=2;
p

2=2; 0/> (Example 4).

Case .d/ corresponds to the real measurements, case .c/ to incorrectly chosen
tangential directions, case .b/ to averaged coefficients which is a routinely used
approach in engineering practise, and case .a/ is for comparison purposes.
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Fig. 3 Domain
decomposition and the
discretization

Each beam is divided into the same number of cubic subdomains with the decom-
position step H and each subdomain is then decomposed into hexahedrons with the
discretization step h; see Fig. 3. To demonstrate the behavior of our algorithms,
we resolved the problem with varying discretizations and decompositions keeping
H=h D 10.

The optimal choice of the parameters in the KPRGP is based on the analysis in
[14] and on numerical experiments: we use � D 1, ˛ 	 2kAk�1, adaptive values
of " depends on the precision achieved in the outer loop, and Nx.0/ is determined by
results from the previous outer iteration. The parameters of the SMALSE-M are
chosen in agreement with [7]. The final relative stopping tolerance terminating the
outer loop is 10�4 and the initial slip bound value in the discrete version of (3.2)
is Ng.0/ WD 0. The examples were computed by MatSol library [12] developed in
Matlab environment and parallelized by Matlab Distributed Computing Server. For
all computations we used 24CPUs of the HP Blade system, model BLc7000.

Example 1. We start with the frictionless case. The solution characteristics are
summarized on the top of Table 1. We observe that the number of matrix–vector
multiplications increases only moderately in agreement with the theory of [7].
The distribution of the normal contact stress Example 1 along the contact interface
is depicted in Fig. 4.

Example 2. Let us consider the isotropic case (b). This choice corresponds to the
averaged friction coefficients of the real measurements for the surface from Fig. 2.
The solution characteristics are summarized in the next part of Table 1. One can see
that the number of outer iterations increases modestly with the size of the problem
and the solution is more expensive compared with the previous example as follows
from a higher number of the Hessian multiplications. The distribution of the normal
contact stress along the contact interface is depicted in Fig. 5. In Figs. 6 and 7, we
show the distributions of the Euclidean norm of the tangential contact stress and of
displacements. The behavior of the contact stress inside the contact zone is seen in
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Table 1 Solution characteristics for all examples

Number of subdomains 4 32 108 256

Primal variables 15,972 127,776 431,244 1,022,208

Dual variables 2,145 24,519 90,957 225,291

Equality constraints 24 192 648 1,536

Frictionless problem (Example 1)

Bound constraints (active) 231 (11) 861 (15) 1,891 (20) 3,321 (35)

Outer iterations 11 11 9 9

Hessian multiplications 87 147 211 210

Isotropic case (Example 2)

Bound constraints (active) 231 (11) 861 (64) 1,891 (135) 3,321 (246)

Circular constraints (active) 231 (220) 861 (830) 1,891 (1,847) 3,321 (3,270)

Outer iterations 11 15 19 22

Hessian multiplications 121 222 415 721

Orthotropic case, circular constraints (Example 3)

Bound constraints (active) 231 (11) 861 (63) 1,891 (155) 3,321 (281)

Circular constraints (active) 231 (211) 861 (796) 1,891 (1,771) 3,321 (3,141)

Outer iterations 11 11 14 15

Hessian multiplications 149 262 487 665

Orthotropic case, ellipsoidal constraints (Example 3)

Bound constraints (active) 231 (11) 861 (63) 1,891 (156) 3,321 (284)

Ellipsoidal constraints (active) 231 (213) 861 (798) 1,891 (1,784) 3,321 (3,151)

Outer iterations 11 10 16 17

Hessian multiplications 121 221 363 469

Orthotropic case, circular constraints (Example 4)

Bound constraints (active) 231 (13) 861 (47) 1,891 (113) 3,321 (203)

Circular constraints (active) 231 (229) 861 (847) 1,891 (1,869) 3,321 (3,301)

Outer iterations 10 12 11 12

Hessian multiplications 126 315 332 344

Orthotropic case, ellipsoidal constraints (Example 4)

Bound constraints (active) 231 (8) 861 (41) 1,891 (102) 3,321 (188)

Ellipsoidal constraints (active) 231 (220) 861 (846) 1,891 (1,860) 3,321 (3,301)

Outer iterations 15 24 28 29

Hessian multiplications 208 376 617 738

Fig. 8. The radiuses of small circles are given by the slip bound values F1	�;i , where
F1 D F2 D 0:3 and 	�i is the component of N�� at the i -th contact node. The arrows
in the circles represent the tangential contact stress.

Example 3. In this example we consider the orthotropic case (c) with the coeffi-
cients of friction F1 D 0:5 and F2 D 0:1 in the incorrectly chosen tangential
directions t1 D .1; 0; 0/> and t2 D .0; 1; 0/>, respectively. The results in Table 1
show that the computations with the circular constraints are more expensive than
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Fig. 4 Normal contact stress
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Fig. 5 Normal contact stress
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Fig. 6 The norm of the tangential contact stress

the ones with the original ellipsoidal constraints. This may be due to worse spectral
properties of the Hessian matrix which increase the bound on the number of
iterations; see Remark 2.1. In Figs. 9, 10, and 11, we depict the distributions of the
normal contact stress and the standard and scaled Euclidean norms of the tangential
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Fig. 7 The norm of the relative tangential contact displacements
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Fig. 8 Contact zone

contact stresses, respectively. The value of the scaled norm at the i -th contact node

is defined as kF�1
i

N�i

t k, where N�i

t D .	t1i ; 	t2i /
> 2 R

2 is the vector made of the i -th
components of N�t1 and N�t2 . The Euclidean norm of the relative tangential contact
displacements is seen in Fig. 12. Finally, Figs. 13 and 14 show the behavior inside
the contact zone. The semi-axes of ellipses are oriented by the directions t1 and t2

and their lengths are F1	�i and F2	�i , respectively. Again, 	�i are the components
of N�� and the arrows in the ellipses represent the tangential contact stress.

Example 4. Finally, let us consider the orthotropic case (d) with the coefficients of
friction F1 D 0:5 and F2 D 0:1 in the directions t1 D .

p
2=2; �p

2=2; 0/> and
t2 D .

p
2=2;

p
2=2; 0/>, respectively. This setting corresponds to the milled surface

depicted in Fig. 2. From Table 1 we can see that the circular constraints require less
computations than the ellipsoidal ones. A heuristic argument explaining this fact is
that the spectral properties of the new matrix after transformation of the ellipsoidal
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Fig. 9 Normal contact stress
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Fig. 10 The norm of the
tangential contact stress
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Fig. 11 The scaled norm of
the tangential contact stress
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Fig. 12 The norm of the
relative tangential contact
displacements
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Fig. 13 Contact zone
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Fig. 14 Contact zone zoom
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Fig. 15 Normal contact stress

constraints into the circular ones are sensitive to the orientation of the ellipses. In
Figs. 15, 16, 17, 18, 19, and 20 we depict the same characteristics of the solution as
in Example 3.
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Fig. 16 The norm of the
tangential contact stress
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Fig. 17 The scaled norm of
the tangential contact stress
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Fig. 18 The norm of the
relative tangential contact
displacements

0 200 400 600 800 1000 1200 1400 1600 1800 20000

500

1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x1 [m]

x2 [m]
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Table 2 compares the computed displacements for different friction models. One
can see the significant dependence of the results on the used friction model. Using
the orthotropic friction law with correctly chosen tangential directions we get the
results which are closer to the reality. An industrial application for the isotropic
case may be found in [6].
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Fig. 19 Contact zone
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Fig. 20 Contact zone zoom

Table 2 Characteristic of the displacements for different friction models in the whole configura-
tion

Friction model max.ju1j/ max.ju2j/ max.ju3j/ max.kuk/

Case (a) 1:93765 0:13952 3:64374 4:12538

Case (b) 1:83178 0:12977 3:02874 3:53673

Case (c) 1:80919 0:12659 2:85510 3:37758

Case (d ) 1:89417 0:30280 3:29204 3:80103

5 Conclusions

The paper deals with the KPRGP algorithm [14] for constrained minimization
of strictly convex quadratic functions subject to simple bounds and separable
ellipsoidal constraints. Since the algorithm uses the reduced gradient defined by
the projection on the feasible set, the implementation requires to compute the
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projections on ellipses. These projections are computed by a combination of the
Newton and bisection methods.

Our study is motivated by the numerical solution of contact problems in
linear elasticity with orthotropic Coulomb friction. The presented approach uses
the method of successive approximations that requires to solve auxiliary contact
problems with orthotropic Tresca friction in each iterative step. The algebraic dual
formulation of the Tresca problem leads to the constrained minimization for which
the KPRGP may be used. As an alternative to KPRGP one can use MPGP algorithm
described in [5]. In order to increase the computational efficiency, we apply the finite
element discretization based on the TFETI domain decomposition method. Since the
TFETI introduces additional equality constraints in the algebraic problem, we apply
the SMALSE-M algorithm [7] in which the KPRGP is included as the inner loop.
The outer loop of the SMALSE-M is based on the augmented Lagrangian method.
The important property of the SMALSE-M is the fact that the number of iterations
needed to get a solution with a given accuracy is uniformly bounded (with respect
to the size of the problem) provided that the spectrum of the Hessian is confined
in a given interval (i.e., the algorithm is scalable). This assumption is satisfied, if
the ratio between the maximal diameter of the subdomains H and the norm of the
finite element partitions h is fixed and the Hessian is normalized in the spectral
norm [6]. Let us recall that the scalability can be proven only for the frictionless
case and Tresca friction but we observed it experimentally also for some examples
with Coulomb fiction.
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